
Appendix 
Quantum Relations Theory: A Brief Overview

By Hardy F. Schloer and Philip Gagner

How will we analyze data two hundred years from now? This question is not
idle—it is of vital interest to those of us who are currently using computers to
represent, manipulate, or acquire information as effectively as possible. To the
extent that we can envision future technology, we can recognize our present
technological limitations and take the right steps to overcome them.

Clearly, present computational methods of modeling reality are very lim-
ited. Much social science research, for example, relies on primitive, correla-
tional, statistical methods. Merely calculating the Pearson correlation between
two variables might test an important hypothesis, but does not say a whole lot
about the reality that underlies it. A more complex study might examine a net-
work of linear associations via a linear structural relations (LISREL) model,
but even this model relies on simplistic assumptions: there is no reason to
expect linear relationships between variables in the real world. A variable X
does not necessarily have the same effect on variable Y at all levels of X. Nor
is it reasonable to believe that X has the same effect on Y at all levels of a third
variable Z. Such statistical methods are used not so much because of their
intrinsic plausibility as because of paucity of alternatives. The rudimentary
nature of the available analytic models in general considerably impairs the
quality of social science that one can generate with their aid.

Although we cannot say for certain what the computing methods of the
future will look like, we can at least make some educated guesses, as follows:

1. Computers will be much faster.
2. Computers will have vastly greater memories and stores of data.
3. Computer architectures will be different.
4. The current methodological sectarianism that compartmentalizes data

analysis and data analysts into separate fields and approaches, such as
“statistical,” “artificial intelligence,” or “neural network” ones, will 

Notes for this section begin on page 195.
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be replaced by modeling methods that will integrate many different
approaches. 

5. Data analysis models will be “hierarchical,” that is, they will be able
to consider a problem at multiple levels simultaneously. It is
reasonable to expect this type of development, because the world
itself appears to have a “hierarchical” or multilevel structure, and,
therefore, an adequate modeling of the world must correspond to
such a structure.

It is not too early to begin thinking about how to move in these directions.
Indeed, we are motivated to do so both because of the limitations of existing
methods and because to do otherwise would be self-defeating. At a very prac-
tical level, the only way to know what is technically feasible with current tech-
nology is to aim high and “push the envelope.” 

This appendix presents a broad and radically innovative approach to data
analysis and modeling, particularly in the areas of social research and human
psychology. We propose a general theory that can adequately describe and
reasonably predict relationships and interactions among people, countries, and
economic, social and cultural variables, as well as the basic emotional and
intellectual dynamics of an individual mind. By its very nature, this theory is
crossdisciplinary. We borrow ideas from many fields, including statistics,
bioinformatics, the social sciences, psychology, neuroscience, artificial intel-
ligence, physics, mathematics, and philosophy. However, we do not do so hap-
hazardly. We aim for a unified theory of data modeling. While this enterprise
is admittedly ambitious, we believe that it is appropriate and timely, for the
reasons we have already stated. We do request a degree of patience from the
reader—some ideas may seem complex at first. Some specific details might
not “fall into place” until the entire appendix is read.

We have, for example, adapted some of our concepts from the New
Physics, especially from the fields of relativity and quantum theory. These
physical concepts apply to our theoretical model partly in a literal and partly
in a metaphorical sense. No particular formulation of this model is indispens-
able for its further development and can easily be modified or readjusted. What
we are proposing is a methodological vision, rather than a finalized method.
Practical applications based on our model are currently in various stages of
implementation. We will describe them in forthcoming papers, providing fur-
ther details about the practical ramifications of our methodological vision.

We call our general theory Quantum Relations (QR). QR was first con-
ceived by Hardy F. Schloer and later collaborated by Philip Gagner.1 In this
appendix we shall present the basic assumptions and features of this theory.
We first introduce specific components of the model, such as frames of refer-
ence, QR objects, QR structure, and so on. We then discuss how the QR
approach can be used as a tool for data analysis and knowledge representation/

Appendix180

05-App  12/19/05  10:16 AM  Page 180

This open access library edition is supported by Knowledge Unlatched. Not for resale.



acquisition in real-world applications. We also provide examples of the QR
approach to real-world problems. Next we briefly consider the computational
requirements for applying the method. Finally, we speculate on potential prac-
tical applications of QR theory in various domains of human activity.

1. QR Frames of Reference (FORs)

QR borrows the concept of frames of reference from the New Physics. In New-
tonian physics, all movement occurs in absolute space. Once an origin is chosen
(e.g., in Cartesian two-space, the point [0,0]), all distances can be measured
from that point, and all motion occurs against the fixed background of that
immutable space. Descartes, following Newton, believed that there was only one
true, absolute, and fixed viewpoint (“the viewpoint of God”), and it is against
this background that everything else moves, and all measurement occurs.

But, even in Newtonian physics this is not absolutely true. If I am driving my car
next to the railroad tracks while a train is moving in the same direction at the same
speed, then the train appears to me to be motionless. That is, in my frame of ref-
erence the train is not moving at all. However, most philosophers and scientists of
the earlier paradigm were convinced that there was one metaphysical reality, an
ultimate stillness, against which both my car and the train would be seen to be
truly moving.

A consequence of the Newtonian model is that objects have, for example,
one “true” velocity. They also have a “true” weight, a “true” size, a “true”
color, and so forth. Newton himself was aware that there was no physical evi-
dence that this idea was correct. He adopted it by a method of reasoning which
he called the “first rule of reasoning,” or the principle of parsimony, and which
we now call Ockham’s razor. That rule states that given a number of possible
explanations, one should select, in the absence of any other evidence, the sim-
plest among them. To Newton, the simplest explanation of motion was that
there was an absolute space in which things moved.

Modern science now believes Newton was wrong. The Newtonian model
is not simple, because it cannot account for a significant number of behaviors
of matter and energy that were, of course, unknown to science in Newton’s
time. A genuinely simpler explanation of the universe, one adopted by Ein-
stein, is that there is no absolute space. Every movement occurs only with
respect to some other objects, and the objects themselves generate the space in
which they move. Einstein simplified Newton’s equations of motion by elimi-
nating any references to absolute position, absolute velocities, and indeed
absolute space itself. To achieve this, Einstein discovered that he had to make
another simplification—to eliminate absolute time as well. The only way to
remove all references to a background space, and still to permit motion, is to
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make time, as well as space, relative to some observer. This breakthrough in
physics is called the Special Theory of Relativity.

Einstein completely reinvented and made mathematically precise the con-
cept of frame of reference with regard to motion of objects. He used the con-
cept of transformations of a frame of reference. No longer were reference
frames some fixed sets of axis coordinates (Cartesian axes). Rather, they
became something flexible, something that changed over time. The frame of
reference became a set of rules by which the objects within it interacted, and the
rules themselves could change. They changed, however, in very precise and
well-defined ways. In the Special Theory of Relativity, the rules change depend-
ing on the relative velocities of the objects within the frame of reference.

Indeed, for Einstein, every object and every observer has its, his, or her
own frame of reference. Time proceeds at different rates for different
observers. So, two observers who measure the same objects and then compare
their measurements might find out that they have measured different lengths.
It is not the case that one observer or the other is right or wrong. Rather, both
will have measured the lengths in different frames of reference (moving with
respect to each other, for example), and each is perfectly correct within his
frame. Einstein’s great achievement in the Special Theory of Relativity was to
present a method that would predict precisely when this would happen and
precisely by how much the measurements would differ.

The two observers will measure different lengths if they move relative to each
other. The difference will be roughly proportional to 1/   1–v2

c2, where v is their
relative velocity and c is the speed of light. For everyday velocities, such as the
3,000 mph speed of the space shuttles, the difference in the length of the shuttle to
its passengers and to a NASA observer on earth, for example, is less than a thou-
sandth of an inch.

In QR, however, the important concept is not the mathematics of relativ-
ity. Rather, it is that objects carry their own frame of reference with them, and
that their interactions (making a measurement, for example) are determined by
the rules that govern their frames of reference (FORs). 

The concept of frame of reference was quickly adopted in science, math-
ematics, and philosophy, and with it the notion that an important characteris-
tic of interactions is the way in which their reference frames relate to each
other. Indeed, in the 1950s mathematicians developed a set of tools that deals
with objects on very abstract levels, portraying their interactions as a set of
relationships. This set of tools has been adopted by modern physics and termed
category theory. A major branch of modern physics involves the attempt to
apply category theory to physical frames of reference.

In turn, QR theory is an application and extension of the principles of
frames of reference or FORs to objects. QR provides a description of the ele-
ments, structures, and interactions between objects. Most importantly, how-
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ever, in QR objects need not be physical. They can also be concepts, relation-
ships, or sets of objects, concepts, or relationships. QR attempts to derive, for
each such set, the rules that govern the interactions of the objects in the set, as
well as the interactions of different sets.

2. QR and Observation

In relativity theory, the observer’s role is, in a certain sense, unimportant. For
an observer, objects and their motions are described in relation to the
observer’s frame of reference, but they could just as easily be described with
respect to any other observer’s reference frame. By contrast, in QR theory, the
individual observer plays a more important role. This philosophical idea is
again borrowed from modern physics. To explain it, we need to dip briefly into
the world of quantum mechanics.

In the early twentieth century, Heisenberg (among others) observed that
there is a fundamental problem with measurement. Every measurement
requires an instrument to make it with, and using this instrument changes
whatever is being observed. That is, a measurement always requires that the
observer interact with the object measured, and the interaction changes both
the observer and the object.

Many attempts were made to overcome this difficulty, including calculat-
ing the exact effect that an observation would have on the object and the
observer (and then calculating the effect of calculating the effect, and so on).
The idea was to quantify and subtract, or calculate exactly, the amount of dis-
turbance and thus to recover the exact state of the object before it was mea-
sured. This approach failed, however, to produce “corrected” observations that
could be explained by physical theories. Paul Dirac eventually resolved the dif-
ficulty by declaring that the observer is part of the system being measured, and
that there are concrete, physical limits to the degree to which one can treat an
observer (including oneself) as an object separate from what is being
observed. Both are simply part of one system, so the best one can do is to
describe the behavior of the entire system, including the observer. Whenever
one tries to extract information exclusively about the object, one introduces
uncertainties that render the measurement imprecise. This phenomenon has
come to be known as the Heisenberg uncertainty principle.

The uncertainty principle is not a failure of measurement, or of the measuring
instruments. It is a fundamental principle of the universe, or at least of modern
quantum mechanical theories about the universe. The principle states that one sim-
ply cannot separate the observer from a system and still obtain precise measure-
ments about the objects being observed. The act of separating the observer’s frame
of reference from the object’s frame of reference introduces these uncertainties.
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If we apply the uncertainty principle at all levels of reality, it should be
obvious that with regard to any single object (or set of objects), there are as
many “realities” as there are observers.2 Because each observer carries his or
her own frame of reference, the results of observations between observers may
differ. In addition, each observer, when making observations, cannot be too
sure of what he or she has observed.

These physical concepts are most fully developed in the specialized cases of par-
ticle physics (the interaction of subatomic particles) and of objects moving in rel-
ativistic frames of reference. However, it is widely assumed that they apply more
broadly in science. It is our belief that there is demonstrable utility in applying
them, for example, in the area of social sciences.

Therefore, QR goes beyond the field of physics. The theory asserts that
physical concepts such as frames of reference and processes of measurement
can be used in much wider fashion to gain insights into complex processes in
general. The assumption that the universe, at a fundamental level, does not
behave like Newtonian, mechanical clockwork can bring forth new insights
into human cognitive processes, behavior, and personality.

QR theory also involves a system of computation. That is, the QR model
can be used in designing computing processes that model complex systems.
Again, the model is derived from modern physics, but this time it employs
other, more sophisticated tools. In later sections of this paper, we shall describe
the methods of computation and the specific computational tools derived from
QR theory.

In QR models of human behavior, one fundamental action is that of obser-
vation. An observation can be a measurement of a physical quantity (such as
temperature). It can also be the result of different kinds of experiments, such as
object recognition, or even the formulation of a hypothesis. The process of object
recognition is perhaps the simplest example. Assume that we have a machine,
called X, which uses a camera to “recognize” a certain face in a crowd. X starts
by returning a value of 0, and it continues to do so until it detects a face that
matches its template. From that point on, X returns a value of 1. If no face has
been recognized, then X continues to return a value of 0. But assume that X is
not a perfect machine—sometimes X gives false-positives (returning a 1 when
the face is not in the crowd), and sometimes X gives false-negatives (returning
a 0 when the face is actually in the crowd). In a certain sense, one can say that X
“observes” the crowd and returns a value with a degree of uncertainty.

Moreover, we are in turn observing the machine X. We are hoping, per-
haps, that a certain person will appear at the airport, and we’ve placed X at the
gate, checking faces. We check the output of X from time to time. Obviously
we may be mistaken about our observation of the value returned by X, perhaps
because we are too hopeful. Our observations are subjective. Our conclusions
are the result of our subjective interpretations of our observations.
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The model of which the above is an instance is quite general. It involves a
measurement instrument that potentially measures with less than perfect accu-
racy and an observer of the measurement who (a) perceives the output of the
measuring device with less than perfect accuracy and (b) is subject to misin-
terpretation (cognitive distortion) of the results, once perceived.

QR provides conceptual and computational models for such situations. In
fact, QR predicts that because X may return an erroneous value and because
we may misinterpret the output of X, we may head to the airport to pick up our
passenger at the wrong time. It also makes the stronger claim that it can pre-
dict with reasonable accuracy how often we will make this kind of incorrect
decision. Of course, other statistical models can do the same thing. What is
unique about the QR framework, however, is its ability to take into account the
observer’s cognitive distortions, subjective prejudices, intentions, and desires.
It does this by making a model of human motivation and decision making, and
then using that model to interact with the known or predicted behavior of X,
the sensory device. Our QR model uses some of the tools of physics to com-
pute these interactions. Moreover, it uses some of these same tools to predict
the processes going on within the brain of the observer. It thus provides a
rough model that approximates the computing operations of the human brain.3

3. Interactors, Observers, and QR Objects

We shall call interactors objects that interact with each other. Observers are a
special case of interactors. Objects can interact with other objects in many
ways. On a physical level, two marbles can, for example, interact through grav-
itational attraction, or through an exchange of particles, or through electro-
magnetic and other physical forces.4 These interactions are modeled through
sets of physical laws, such as the laws of gravitation or of electrodynamics. 

Large collections of physical objects can be modeled with the laws of
thermodynamics that describe the behavior of hundreds, thousands, or bil-
lions of individual interactions through statistical methods. In thermodynam-
ics, or in statistical quantum mechanics, one disregards individual interactors
and takes into account only the gross properties of their interactions. One
trusts that any uncertainty about individual interactions will be negligible in
comparison to the prediction derived from the knowledge of the physical laws
that govern their collective behavior. 

When it comes to human behavior, including the behavior of entire soci-
eties, we may no longer deal with physical objects and physical laws, but we
are still dealing with interactors at multiple levels. One level of interactors may
include social entities (people, organizations, countries, and so on). Another
level (such as the psychology of an individual person or organization) may
include concepts, emotions, memories, habits, preferences, and other mental
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objects. When dealing with human behavior, QR is concerned with under-
standing the dynamics that govern the interaction of these social or psycho-
logical entities or objects. It employs a set of tools for studying and predicting
the complex relations of such conceptual, behavioral, and personality entities
or objects. 

Most importantly, we should recall that QR objects could indifferently be
physical, natural, artificial, mental, ideal, and so on. A memory or a recording
of past events by the brain is an example of a QR object. However, a memory
is not a static object.5 Memory changes over time. It may fade, becoming less
accessible to the conscious mind, or it may intensify, becoming more vivid. It
may be modified by later experience or change into another memory alto-
gether. Memories interact with other memories, emotions, habits, beliefs, and
observations. QR postulates that these changes can be modeled in a well-
defined way, using the tools of QR.

Furthermore, the observation of memory is different from a memory
itself. The observation of a memory is the recalling of the memory to the con-
scious mind. More precisely, it is the way that memory fits into the scheme of
interactors associated with conscious self-awareness and behavior. The obser-
vation of memory may also change over time, even if the memory itself does
not change, because of other factors in the scheme. We call this phenomenon
the interpretation of memory objects. The interpretation of memory objects
constitutes a significant part of one’s individual reality. Therefore, interpreta-
tion represents objects of individual reality.

4. QR Superstructures and Data Fusion Objects (DFOs)

QR as applied to human behavior posits the existence of certain structures. It
does not assert that these structures necessarily have physical existence—
merely that they are constructs that permit predictions of behavior.

A basic QR concept is that of “superstructure.” This simply means that
zero, one, or more QR objects can be embedded into a higher-level QR object.
In turn, the behavior of the higher-level QR object is determined by its own
relational rules, plus the behaviors of the QR objects embedded within it.

A QR superstructure can be viewed as a “space” in which the lower-level
objects are embedded. The space has rules that govern the interactions of the
objects within it. In turn, the objects have properties that determine how they
interact with other objects within the space and with the space itself. We call
such objects Data Fusion Objects, or DFOs. We have chosen this name because
the objects “fuse” two different characteristics: properties and methods.

This QR concept recalls object-oriented programming languages in design theory,
where objects contain their own properties and methods. A property is some value
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that gets returned to the caller of the object, or is stored internally for later use.
In turn, a method is some way of accessing or modifying the information within
the object.

A simple example of a DFO with properties and methods is a house. A
house has various properties, such as its paint color, the number of windows or
floors, location, street address, inhabited or uninhabited, and so forth. A house
may have methods as well, such as how to lock or unlock its doors, how to heat
or cool it, or generally how to use it as a dwelling.

In QR, DFOs are generally interpreted through a frame of reference
(FOR). The way this is done is to embed the DFO into a particular FOR,
together with the model of the observer. In this case, the frame of reference is
also the observer. In most realistic cases, the FOR “model” itself will be triv-
ial (and it will usually be built into the FOR relational rules). Nevertheless, the
fact that the DFO interacts with the observer cannot be disregarded.

More than one DFO may be inserted into a frame of reference. In fact,
there may be millions of DFOs embedded within a particular FOR. In turn,
the frame of reference itself has both properties and methods, and therefore
can equally be regarded as a higher-level DFO. Furthermore, a DFO may be
composed of lower-level DFOs (or may be decomposed into them when the
need arises), or it may in turn be embedded within higher-level DFOs. In this
way, one can build a modeling hierarchy of DFO structures to model any type
of problems.

The concept of DFO is overarching, applying to objects, sets of objects,
and frames of reference, as well as to various levels of aggregation among
them. This flexible hierarchical structure is a fundamental strength of the QR
approach. Applying a common concept across all levels and types of “entities”
has two important advantages: 

(1) It allows a common set of analytic and computational tools to be
applied universally throughout the model. At a simple technical level, this
means that, in the computer software used to apply the QR model to a partic-
ular problem, there are functions and subroutines that can be applied consis-
tently across objects and frames of reference at various levels.

(2) It facilitates the development of analytic models that operate on several
levels of aggregation (and logical category) simultaneously.

A ditty by Jonathan Swift:
Big fleas have little fleas upon their backs to bite them,
And littler fleas have littler still,
And so on ad infinitum.

A DFO may be an element in more than one FOR. Each frame of refer-
ence can be thought of as a “view” of that DFO. As noted above, each frame
of reference is itself a DFO, so that one can have the following situation:
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In this example, the DFO-A on the right and the DFO-A on the left are
identical objects, embedded within two different reference-frame DFOs,
labeled X and Y. However, X and Y interact with each other, presumably in
some higher-level reference frame. X and Y can be thought of as two different
“views” of A and B. Their type of interaction may represent, for example, the
state of mind of a man who has two different views of the same car—one pos-
itive and one less so—and is, therefore, conflicted about buying it or not.

A particular set of “views,” each of them being DFOs, may in turn be part
of one or more higher-level DFOs. This hierarchical model, with the addition
of some more detail, including the nature and restrictions of rules that may be
applied between DFOs, is the fundamental concept of QR. One of the basic
rules is that a DFO may communicate only through its higher-level DFO,
which imposes an important formal constraint on DFO systems and prevents
the DFO model from becoming impossibly complex.

5. What Makes Quantum Relations Quantum?

The term “quantum” as used in physics is derived from the Latin word quan-
tus, meaning “how many?” It was first used to describe the behavior of systems
in which only certain levels were permitted. In classical physics, a particle of
light can have any amount of energy, but in quantum physics, only certain lev-
els are permitted. In turn, these levels are highly constrained by the laws gov-
erning the atom that emitted the photon. The basic unit of which all other
values must be a multiple is called a “quantum.”

The term “quantized” means that a system can take on only certain values,
and those are chosen according to particular rules. As an example, U.S. cur-
rency is quantized, and the quantum is the penny. In everyday life, nothing
costs a fraction of a penny.

In QR, a DFO viewed through a frame of reference (and it can be viewed
in no other way) can return only particular values according to particular rules.
The rules that govern DFO interactions are highly constrained and obey defi-
nite patterns. In this sense, QR is a “quantized” version of everyday human
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reality. The fact that it is quantized means that one can model it on a computer
and that one can also perform calculations with it. 

In modern physics, a major concern is to create from a physical theory what
is called an “algebra” over that theory. An algebra is a set of rules that govern
the interaction of elements. For example, ordinary arithmetic has an algebra.
The algebra of arithmetic is a set consisting of all the numbers6 plus two opera-
tions, addition and multiplication, plus a few rules of interaction that explain
how addition and multiplication work. Thus, the algebra of arithmetic is:

{¥ , = , *} with ¥ = {0, 1, 2, 3 …} onto 

The symbol is simply all rational numbers, i.e., all the numbers one can
get with arithmetic, like ½, or ¼, or 105, etc.; or all the numbers one can get
by applying the stipulated arithmetic rules to the set of integers. Using the
rules of multiplication, one can derive division, and using the rules of addition,
one can derive subtraction. 

Just as there is an algebra of arithmetic, there is an algebra of DFOs. One
starts with defined objects and with operators one wishes to apply to the DFOs.
One can then obtain an algebra over the DFOs. Whereas the algebra of arith-
metic produces the “field” of rational numbers, the algebra of DFOs produces
a different kind of field. We sometimes refer to that field as “RavenSpace.” It
obeys certain rules that are reminiscent of the fields of quantum physics.7

QR is therefore “quantum” because it attempts to quantize all types of
objects, including concepts, perceptions, memories, behaviors, and so forth. Its
objects are not numbers but processes, or functions, or “quantitative relations.”

QR often places objects in a theoretical structure called a “space.” If certain
conditions are met, this space is a “metric space.” A metric space is a space in
which objects obey certain rules (for example, the concept of “distance” between
objects is one such well-defined rule). One of the goals of QR is to represent
many different kinds of objects—including ideas, emotions, behaviors, and the
like—in metric spaces. In some cases, QR uses terms like “mass” or “energy” or
“gravity” to model these systems. This does not mean, of course, that a system
of, say, psychological or personality concepts has actual mass, energy, or gravi-
tational fields. It means only that QR assumes that concepts within this kind of
system behave and interact according to rules similar to the dynamics of physi-
cal objects. Because the rules of DFO interactions are part of the frame of ref-
erence of the DFO, such rules can be easily written, combined, and tested.

One simple operation is to compute the “center of gravity” of various DFO
objects. For instance, consider the dynamics involving four hypothetical stock
traders. We know, or at least speculate, that stock traders are largely motivated by
“fear” and “greed,” and that these factors influence their preference for a given
stock. We also know that the relative influence of each factor and the degree to
which a trader is either attracted or repelled by a given stock change over time. In
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the picture below, various DFO objects are modeled as a function of the “greed”
and “fear” of four hypothetical stock traders at specific times when they commit-
ted to a buy or a sell trade, each being modeled by one DFO. Thus, let there be:

x = the degree to which a trader prefers the specific stock in the example
on the basis of Fear 

y = the degree to which a trader prefers the specific stock on the basis of
Greed.

QR posits that for any stock, trader, and time, the trader evaluates his
options based on a joint function of a greed motive and a fear motive.
Generally, this means that:

Pi (t) = fi,t[x(i,t), y(i, t)]

where:

Pi (t) = the preference for or against the stock for Trader i at time t

x(i,t) = the degree to which fear motivates Trader i to buy/sell the stock at time t

y(i,t) = the degree to which greed motivates Trader i to buy/sell the stock at time t

fi,t[] = a function that maps the combination of x(i,t) and y(i,t) into a total
preference of Trader i to buy/sell the stock at Time t.  For example, a simple
form of the function might be a weighted composite, fi,t[x(i,t), y(i, t)] =
wi,xx(i,t)+wi,yy(i,t), where wx and wy are the relative weights of fear and
greed in determining Trader i’s preferences.

Our time axis in this example represents the trading day and is repetitive
over time. That is, the time axis begins (t=0) at the opening and ends (t=4 p.m.)
at the closing of the market every day, while the behavior is averaged over many
days. In addition, the size of the DFO indicates its “mass,” which might be the
total trading dollars available to that trader on average. The position on the time
axis indicates the time at which the particular trader is likely to buy or sell a par-
ticular stock. The trading behavior of one trader greatly influences the behaviors
of the others, so that the actual model is dynamic, not static as shown here.
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In this graph, there is a “critical point,” which is the computed center of
gravity of this particular situation. At this point we can expect certain behav-
iors in the market to start changing.

Another element is worth mentioning. The value of a trader along the axis
“Fear” is actually shorthand for the trader’s observed behavior over many days.
For example, our trader may pass up opportunities that involve “objectively”
perceived risk, even as other traders take advantage of them. Here the model
postulates that the trader’s behavior is driven by fear, but if one introduces any
other factor, such as laziness or inability to marshal resources, the model will
still work. If necessary, the property “fear” can be decomposed further, in
order to create a more complex model. But that does not substantially affect
the model’s viewpoint, except that the paths of the DFOs will change over
time.8 The decomposition of “fear” that is applied to the stock trader scenario
might be applied to other scenarios as well, and may give better results in those
systems, or vice versa. Finally, the entire DFO model may be viewed through
one or more frames of reference, and these may be combined to build a model
of the market as a whole.

6. Time and QR Systems

QR systems evolve over time. That means that the functions governing the
interaction of subobjects (i.e., some FOR rule) depend upon a parameter “t.”
For example, one can imagine a frame of reference or FOR containing two
DFOs, called CLOCK1 and CLOCK2. These two DFOs and, indeed, the FOR
itself have a method, called “tell-time.” When the FOR invokes the tell-time
method for itself, it gets answer 23. When it invokes it for CLOCK1, it still gets
answer 23. But, when it invokes it for CLOCK2, it may get answer 27. In this
example, CLOCK1 and CLOCK2 are experiencing time at a different rate.

QR has developed some basic (i.e., default) principles of time in QR sys-
tems, as stated below:

• Time is unique to systems and observers (i.e., the rate at which things
happen is dependent on the frame of reference).

• Time is measured through increments of change within systems. That
is, time is discreet, not continuous, although in some cases it can be
modeled through differential equations, which assume continuity. 

• Time advance can decline to zero in a system without ending the
system’s existence.

• A DFO concerned with time can always be asked what its (local) time
is, but the answer may be different for different FORs.
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Because all DFO time is local, two DFOs that interact through an FOR
will never need to worry that their times do not match. They will perceive the
passage of intervals according to their interaction with their FOR, and for
each of the DFOs the time will always be “the present.”

7. DFOs and Self-Organizing Structures

A self-organizing structure is a structure in which (a) the elements obey cer-
tain rules and (b) the rules modify the structure over time in such a way that
certain features are emphasized. A simple example of a self-organizing struc-
ture is a two-dimensional array of numbers, with the organizing rule for each
element being: “If I am equal to zero, and not already on the left margin, then
switch me with the element on my immediate left.”

This rule moves all the zero values of the array to the left. This may be a
useful rule if, for example, the array is very large and one wants to know how
many zeroes there are in it. Many more useful examples can be found in the lit-
erature on self-organizing maps. (Kohonen 1997)

It is often useful in QR systems to make the FOR rules self-organizing with
respect to their DFO elements. In this case, the passage of time will itself drive
the DFO into organized behavior, and this can be used, in some cases, to find
patterns within the DFO structure that were previously not recognized. In such
cases, the FOR must have appropriate pattern recognition algorithms built into
it, exactly as with any other self-organizing, map-based system. One difference
is that in QR the pattern-recognition systems themselves can be DFO- based.
This gives rise to a natural parallelism, because the sub-DFO objects can be
shared by multiple FORs that can run on parallel computing hardware.

8. Adaptive Processing in the DFO Model

As described earlier, the manner in which DFOs communicate with each other
within an FOR is determined by the rules built into the FOR. These rules need
not be static. Indeed, a DFO can pass on to the FOR a suggested new rule for
further processing.

A FOR can, moreover, create new DFO objects within itself. It can create,
for example, copies of any of its member DFOs, and it can also modify the
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new copies in any way permitted by the DFO rule sets. One of the methods of
a DFO can be a request for a new “strategy” to be used by the FOR in which
the DFO is embedded. The FOR can request from its own higher-level FOR
that a copy of itself be made, with the new strategy replacing one of its own
rules. The requesting FOR can then be either preserved or destroyed. Since the
newly created FOR is an exact copy of the requesting FOR, except for the
requested changes, the general rule is to destroy the old FOR.

This QR feature gives rise to a flexible and adaptive processing model in
which DFOs can interact, as well as be created or destroyed. Their interaction
may in turn produce new DFOs. Here the QR model is similar again to sub-
atomic physics, where particles can also interact and produce other particles,
or be annihilated. 

A DFO can request its own annihilation by its FOR. It would do this when
its processing tasks are complete (or determined to be futile). For example, a
DFO that is used for object recognition would request its own annihilation when
it has passed its best guess up to its FOR, and there is no further need for it.

On a conceptual level, a DFO may be seen as attempting to resolve a par-
ticular query, such as whether a given set of inputs matches some template for
object recognition. Competing DFOs within the same FOR may be attempting
the same task, and the FOR may determine that it is satisfied, simply extin-
guishing the sub-DFOs. DFO results may be passed on as probabilities, and
when a probability passed upward during an ongoing computation reaches a
given threshold (such as 90%), the FOR may be sufficiently satisfied to stop
the other sub-DFO objects, releasing resources for other computations.

9. DFOs and Locality

DFOs are, from their own perspective, local. That is, they are self-contained
objects that communicate with a higher-level process only through very struc-
tured mechanisms. However, the ability to have the same DFO in more than
one FOR makes the model globally nonlocal. Information may be passed
through a DFO in both directions, so that two different FOR objects can
potentially communicate.

It is entirely possible for a DFO to be operating on one piece of comput-
ing hardware (including the “wetware” of some portion of the brain) and to be
passing messages to its FOR, which is operating on an entirely different piece
of computing hardware. The DFO model accommodates parallel computing
technologies.

For DFO structures that have been metricized, as described above, the
objects are distributed in some space. These spaces represent, in fact, a sophis-
ticated model of conventional space-time, in which case the DFOs represent
objects in space-time. As such, they are subject to and obey well-defined rules,
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which preserve both the metric nature of the space and the desired space prop-
erties, based on a particular DFO space.9

The general principles that follow from the previous discussion include:

• QR systems are conceptual objects constructed by making models of
observation.

• QR objects and systems are structured and may, in appropriate cases,
be viewed as distributed in some space-time.

• Although DFOs are local from their own viewpoint, QR systems are
nonlocal in time or in their position in space-time. Nevertheless, they
are subject to stringent transformational rules imposed by their frame
of reference.

• QR systems can be distributed and can take advantage of parallelism.
• QR objects (DFOs) are building blocks or models of reality.

10. Cognitive and Practical Consequences

We have described the first steps toward building a model of human cognition,
personality, and social behavior, based on DFO structures. It is important to
realize that such a model is currently in its developing stage—we have merely
described some of its conditions of possibility. When fully developed, the QR
model would be useful, for example, in analyzing the most complex aspects of
human behavior and in bringing sociological predictions to an acceptable level
of accuracy. 

Applications may include QR systems concerned with early detection and
possible prevention of ecological disasters, global health hazards and epi-
demics, wars and political terrorism, stock market crashes, or severe socioe-
conomic crises and conflicts. They may also include diagnosing irresponsible
and dangerous human behavior, such as unsound or irresponsible governing on
all levels. Finally, QR may become an effective tool in elaborating and testing
new scientific hypotheses and new technologies in a wide variety of fields, as
well as in creating new global research and learning systems. Some of these
applications are already in various stages of development and will be pre-
sented in future papers.

Appendix194

05-App  12/19/05  10:16 AM  Page 194

This open access library edition is supported by Knowledge Unlatched. Not for resale.



Notes

1. We would also like to thank Mihai I. Spariosu, who has been working with us both on the
philosophical context of QR and on some of its practical applications in global learning and
research.

2. More precisely, there are as many “realities” as there are observers whose frames of refer-
ence have different transformational rules. The differences in observation by each observer
will differ by the amount determined by the different transformational rules. In relativistic
motion, for example, there are as many different ‘realities’ regarding the length of an object
as there are observers whose motion relative to that object differs. Of course, these differ-
ent realities are all related to each other by the equation given above.

3. This is not a claim that the human brain is (only) a computing device. It is merely the recog-
nition that the human brain is a device capable of some sophisticated computations.

4. The game of marbles is a set of electromagnetic interactions since only the electrons in the
shells of the atom actually interact. The electrons in one marble repel those of the other,
causing one marble to fly off when another one hits it.

5. Neither is a subatomic particle, actually. Subatomic particles viewed within very short time
spans may change form, turn into one another, and so forth, in accordance with laws gov-
erning their interactions, including self-interaction.

6. For the mathematically inclined, it is more precise to say the set of integer numbers.
7. Again for the mathematically inclined, functional operators (functors) are developed, and

the “field” is actually a field of operations over the functors. 
8. From a viewpoint inside the DFO, we have added dimensions.
9. Again for the mathematically inclined, the functions that a DFO can execute may be viewed

as operators on the space-time within it. A cover can be defined which is the set of such
functions, and it is often useful to speak of the properties of that cover. Indeed, the behav-
ior of the DFO itself may be, in appropriate cases, determined by the function space that can
be so derived.
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